HF Signal Propagation

Bill Leonard NOCU 1 June 2019

Primary Modes of HF Wave Propagation

- 1. Direct (line of sight) wave
- 2. Ground (surface) wave
 - Beyond line of sight
 - Maximum range ~40 mi
 - Vertical polarization only
- 3. Sky wave (via ionosphere)

Primary Modes of HF Wave Propagation

- 1. Direct (line of sight) wave
 - Maximum range 10-20 mi
- 2. Ground (surface) wave
 - Beyond line of sight
 - Maximum range ~40 mi
 - Vertical polarization only
- 3. Sky wave (via ionosphere)

Secondary Modes of Wave Propagation

- Ionospheric modes
 - Meteor scattering
 - Auroral backscatter
 - Sporadic-E propagation
- Tropospheric modes
 - Tropospheric ducting
 - Up to 1000 mi
 - Frequencies >40 MHz
 - Tropospheric scattering
 - Rain scattering
 - Airplane scattering
 - Lightning scattering

Why Are Ground Waves Vertically Polarized?

- Polarization of a linear EM wave is defined by the E field
- Horizontally polarized wave has the E field in contact with the Earth
 - A conductive surface will act like a short to an E field Ex: Dipole antenna laying on highly conductive ground plane
- Magnetic fields are unaffected by conductive materials
 - Magnetic fields are affected by ferromagnetic materials
 Ex: Magnetic loop antenna near ground

Groundwave Propagation Beyond Horizon

- Earth is a lossy dielectric
 - Resistance: loss causes signal attenuation
 - Capacitance: slows down wave travel <u>near the Earth</u>
 - Causes wave to bend and follow the curvature of the Earth

FIGURE 8-12 Ground-wave propagation.

Polarization Of A Reflected Wave

You are receiving a European DX station on 14 MHz via the North Pole. He is using a horizontally polarized antenna.

- Question: What is the polarization of the signal at your antenna
 - 1. Horizontal
 - 2. Vertical
 - 3. Can't tell because of Faraday rotation
 - 4. None of the above

Polarization Of A Reflected Wave

You are receiving a European DX station on 14 MHz via the North Pole. He is using a horizontally polarized antenna.

- Question: What is the polarization of the signal at your antenna
 - 1. Horizontal
 - 2. Vertical
 - 3. Can't tell because of Faraday rotation
 - 4. None of the above

- Answer: None of the above
 - Why: All ionospherically refracted (reflected) signals are elliptically polarized

Wave Polarization

- Linear
 - Horizontal vs Vertical polarization
 - Cross pol => no signal
- Circular
 - E & H fields both rotate 360 deg per wavelength of travel
 - Left vs right polarization
 - Cross pol => no signal
 - Linear Rx with circular Tx (and vice versa)
 - Loss = -3 dB *regardless of orientation* of antennas
 - How to generate a circularly polarized signal?
 - Helix antenna
 - Crossed dipoles

Ions and Plasmas

An ion is an atom that has had one or more electrons stripped away

- A plasma is an ionized gas consisting of approximately equal numbers of positively charged ions and negatively charged electrons
- The free electrons in the plasma in the ionosphere are what causes refraction of radio waves

Why Are All Ionospherically Refracted Signals Elliptically Polarized?

- The ionosphere is a <u>magnetized plasma</u> (ionized gas)
- Magnetized plasmas are birefringent
- A "Birefringent" medium is a medium with two refractive indices
 - A <u>linearly polarized</u> EM wave passing thru a magnetized plasma splits into two separate, counter rotating circularly polarized waves:
 - 1. Ordinary (O-mode) wave
 - 2. Extraordinary (X-mode) wave
- The O-mode wave follows the magnetic field lines
 - Propagation path is close to what would occur in a non-magnetized plasma
- The X-mode wave goes perpendicular to the magnetic field lines
 - Higher path loss
 - More susceptible to ducting (can go farther than the O-mode)

Divergence of O and X Mode Waves

Forward O Mode Waves

Reverse O Mode Waves

Forward X Mode Waves

Reverse X Mode Waves

Why Is Birefringence Important?

- Ionosphere is <u>no longer reciprocal</u>
 - One way propagation is the norm
 - The two paths for a QSO are different
- X and O waves:
 - May, or may not have equal powers
 - Can take radically different paths exiting the ionosphere
 - Beam headings may not follow Great Circle routes
 - Up to 90 deg different at the poles
 - Have different MUFs, skip distances, propagation velocities, & attenuation
- Degree of divergence of X and O waves:
 - Varies with location, frequency, take off angle, state of the ionosphere,...
 - Worst at low frequencies and at the Poles
 - Least along the Magnetic Equator
- Most propagation programs only deal with O-mode
 - Proplab Pro Ver 3 shows both

Reflection vs Refraction

- The ionosphere is a refractive surface (not a reflective surface)
- Why this is important => ?

