What is a Software Defined Radio - Processes I and Q Quadrature Signals - Detection, Filtering, and other Receive Processes use Digital Signal Processing - Transmit Information Generated by DSP and Converted to Analog with D to A #### Advantages - "Brick Wall" Filters - Demodulate Anything Including AM, FM, SSB, RTTY, PSK All in Software - Support New Modes With Software Upgrades - Panadapters and "Waterfall Displays" are Free because of Conversions to Frequency Domain # Two Methods to Digitize Signal - Direct Digitization of Antenna Signal - Quadrature Sample and Hold - Both Produce I and Q Signals #### Process Signals - Originally Used PCs - Use Better Sound Cards - Dedicated DSP Hardware - Higher and Higher Signal Rates ### Direct Digitization - Must Sample at Twice Desired Frequency - 130 MHZ Limit of Hardware - 16 Bit sample - Problems Matching Antenna Impedance # QEX Article That Started It All - A Software-Defined Radio for the Masses - http://www.flexradio.com/Data/Doc/ qex1.pdf - Used Tayloe "Detector" - Nearly Lossless - High dynamic range # Quadature Sample and Hold - "Down Converts" Analog Signal to High Audio Frequencies - 24 Bit Analog to Digital Converters Available - Still Need Band Pass Filters # Analog To Digital Converter - Imagine I Volt Peak to Peak I khz Sine Wave - In Time Domain Trace on Osciliscope - Sample at 4 khz - 0, 1, 0, I Volts #### Nyquist Frequency - Must Sample at 2 x Frequency - Audio 20 hz to 20 khz - CD Sample Rate 44.1 khz - PC Sound Cards 16 bit 44.1 khz #### SDR Use I and Q - Two Samples 90 Degrees out of phase - Bandwidth Good for Sample Rate - More Bits Better Dynamic Range and Less Noise - Sound Cards Available 24 Bits 192 khz # Convert RF to Baseband - Dan Tayloe N7VE - http://www.norcalqrp.org/files/ Tayloe mixer x3a.pdf - http://www.amrad.org/pipermail/tacos/ 1998/000464.html - Nearly Lossless - Simple Hardware # Balanced Tayloe Detector #### Softrock Ensemble ### Digital Signal Processing - Use Computer or DSP to process I and Q Signals - Fast Fourier Transform to Convert to Frequency Domain - Math can Provide Nearly Perfect Filters #### Evolution of Radios - All Analog OHR 100A - Computer Control K2 - Software Defined Flex, K3, Softrock #### OHR 100 A ### K2 Block Diagram ### K3 Block Diagram #### Direct Sample SDRs - Perseus - High Performance Software Defined Radio - SDR-14 - AMRAD Charleston SDR - RFSpace NetSDR - All are Receivers ### SDR-14 Block Diagram #### Other Uses - Generate I and Q Signals for Panadapter - LP-Pan Panadapter - Ensemble as Panadapter ### Receiver Ratings #### **Receiver Test Data** (Sorted by Dynamic Range Narrow Spaced) Updated 15 June 2011 | Device
Under Test | Noise
Floor
(dBm) | AGC
Thrshld
(uV) | dB | 100kHz
Blocking
(dB) | Sensitivity
(uV) | LO
Noise
(dBc/Hz) | Spacing
kHz | Front End
Selectivity | Filter
Ultimate
(dB) | Dynamic
Range
Wide
Spaced
(dB) | kHz | Dynamic
Range
Narrow
Spaced
(dB) | kHz | |--|---|---|----|----------------------------|--|-------------------------|----------------|--------------------------|----------------------------|--|-----|--|-----| | Added
12/01/10
Yaesu
FTdx-
5000D | -123
-135 ^b
-
141 ^{b1} | 4.6
1.2 ^b
0.33 ^{b1} | 3 | 127 ^s | 1.1
0.27 ^b
0.13 ^{b1} | 135 | 10 | B Band
Pass | 90 ^f | 104 | 20 | 101 ^f | 2 | | Added
2/15/08
Elecraft
K3 | -130
-138 ^b | 2.1
0.6 ^b | 3 | 140 ^s | 0.33
0.19 ^b | 138 | 10 | B Band
Pass | 105 | 104 | 20 | 101 ^{pf}
96 ^{qf}
95 ^r | 2 | | Updated
7/2/09
Perseus | -123
-125 ^b | 0.15
0.1 ^b | 3 | 125 | 0.8
0.6 ^b | 147 | 10 | B Band
Pass | 109 ^f | 99 | 20 | 99 | 2 | | Added
2/15/08
FlexRadio
Systems
FLEX-
5000A | -123
-135 ^b | 2.0
0.5 ^b | 3 | 123 ^s | 1.3
0.3 ^b | 123 | 10 | B Band
Pass | 98 | 96 | 20 | 96 | 2 | | Added
4/16/06
Ten-Tec
Orion II | -125
-133 ^b | 2.7
0.65 ^b | 3 | 130 | 0.75
0.3 ^b | 126 | 10 | B Band
Pass | 100 ^f | 95 ^f | 20 | 95 ⁱ | 2 | #### Where are we? - SDR Receivers Are Close to the Best - SDR Transmitters May Have Keying Problems - Direct Sampling and Quadrature Sampling About Equal - No Direct Sampling Transceivers - Direct Sampling Receivers are Expensive