Relays Part 1

Bill Leonard NOCU 3 June 2017

Acknowledgement

 Some of the material shown in this presentation was obtained from Tom Rauch's W8JI.com website

Relay Basics

- A relay is an electrically operated switch
 - Mechanical
 - Solid state
- More than 18 *basic* types
- Typical switching configurations:
 - Single Pole Single Throw (SPST)
 - Single Pole Double Throw (SPDT)
 - Double Pole Single Throw (DPST)
 - Double Pole Double Throw (DPDT)
- Nomenclature
 - Normally open (NO)Normally closed (NC)

Common/Pole (C)

N (normal) refers to de-energized

Relay Basics (cont'd)

- Typical ham applications:
 - RF (low SWR & low RF loss)
 - Signal routing
 - High power switching
 - Fast
 - Used for QSK (break-in) applications
 - Low/medium power RF (reed)
 - High power RF (vacuum)
 - Any combination of: Low voltage, Low current, High voltage, High current
- AC (60Hz) & DC coils

Relay Ratings

- W8JI: Manufacturer relay ratings don't represent RF performance
 - Ratings are usually for:
 - Hot switching
 - Into specified load types
 - At low frequencies (or dc)
 - At fixed voltages
 - Closed contact current capability:
 - Is usually much higher than manufacturer's current rating
 - More representative of ham applications
- Contact rating is a complicated topic with numerous parameters

Relay Ratings (cont'd)

- For RF applications, need to consider:
 - RF loss
 - Skin Effect
 - SWR
 - Unless relays are designed for RF applications, they can degrade SWR
 - Cascaded SWRs will add or subtract depending on their respective phases
 - Two 1.5:1 SWRs in tandem can result in >2.2:1 net SWR
 - Peak RF voltages increase as the SWR E=\PXR
 - Peak RF currents increase as the √SWR J = √P/R
 - Usually large relays are not as good as small relays for RF applications
 - More inductance
 - Less contact pressure due to large contacts
 - Non-optimal contact materials

Relay Ratings (cont'd)

- Hot Switching:
 - RF vs 60 Hz hot switching?
 - Relay contacts can be destroyed if opened or closed while RF is present
 - Damage can occur very quickly with plated contacts
 - Tx/Rx system timing of relays is important
 - RF hot switching can also damage other components
 - Power transistors in solid state amps
 - Plasma arcs in tube amplifiers
 - Plasmas are self-sustaining
 - Once started, plasmas continue until power is removed
 - Damage occurs in seconds, not minutes
 - Relay contacts can fuse together

Relay Ratings (cont'd)

- Contact oxidation:
 - Silver can oxidize quickly (in weeks) and result in intermittent contact
 - Oxidation problem is worst with non-gold plated contacts that are rarely activated and have no residual current flowing thru them (wiping current)
 - Gold (plate) is the best contact material for low current/low cycle applications
 - Gold does not oxidize
 - Only used on plated (ie, low current) contacts
 - Sometimes intermittent operation is caused by contamination, not oxidation

Skin Effect

- Skin effect (δ):
 - Skin effect is due to opposing eddy currents induced by the changing magnetic field resulting from an alternating current (Maxwell's equations)

- Increases inductance & resistance (loss)
- Increases contact bar and wire heating in relays
- Worse with braided wires which are lossy RF conductors
- Example (copper):
 - At 14 MHz skin depth = 17um = 0.0007 in

Relay Contact Cleaning

- **W8JI**: "Relays (and switches) *almost never* cause input SWR issues or intermittent operation *during transmit*".
- I disagree!
 - Intermittent SWR & power are frequently the first signs of burned contacts
 - Intermittent operation can also result from a "sticky" relay armature
- Nonplated relay contacts can be cleaned with special file
- Contamination can also cause intermittent operation
 - Using an abrasive material can remove thinly plated material!
 - This can make a relay unusable
 - Best ways to clean:
 - Use:
 - De-Oxit
 - WD40 and cardboard or cloth (or non-glossy paper per W8JI ??)
 - May not be an option with enclosed relays
 - Apply a small DC "wiping" current while cycling the relay

Relay Contact Cleaning (cont'd)

• W8JI circuit for cleaning relays in external amplifiers

- It isn't clear to me why he presented this circuit
 - Amplifier relays are not likely to have contact oxidation or contamination problems
 - They are frequently activated and have moderate to high currents flowing in the contacts
 - This type of cleaning is automatically done whenever the amplifier is in line but turned off

Relay Misc

- Back EMF (voltage spike) can damage components
 - Cause: Current thru an inductor cannot change instantaneously
 - Back EMF of a relay coil = di/dt (i = relay current & t = delta time)
 - di/dt is the amount current change per unit of time
 - As dt => 0, V => infinity
 - V never gets to infinity because of arcing across the contacts
 - Voltage can reach >10x supply voltage
 - Back EMF voltages can:
 - Exceed transistor breakdown voltage
 - Burn switch & relay contacts
 - Suppression techniques:
 - DC coils => back biased diode
 - AC coils => "snubber" or back-to-back Zener diodes
 - All of these methods can slow down the release time and reduce life of the relay (W8JI) (?)

Relay Misc (cont'd)

- Some AC relays buzz when activated
 - Not sure why some do and some don't (even with the same P/N)
 - Fixes:
 - Replace relay with one with the same P/N
 - Replace relay with a different P/N
 - Convert over to a DC supply for the relay coil
 - Note: A 120 VAC coil may only need 10-20 VDC to operate properly
- Add a DC "wiping current" to the relay contacts
 - Some mfgs of ham equipment have started doing this
- RF isolation requirements can be important for both relays and switches
 - Rarely discussed in ham publications

RF Isolation

- Specifies the amount of unwanted coupling between two circuits
- RF isolation requirements:
 - For antenna switching applications
 - Strong signal bleed thru can cause problems in a receiver
 - IMD interference
 - Adjacent signal interference
 - For switching between transceivers:
 - Maximum allowed input to a receiver usually not spec'd
 - Damage level is typically assumed to be 100 mW (+20 dBm)
 - Note: This number applies even when the receiver is turned OFF!
 - Minimum isolation required for RF relay or switch:
 - Transmit power = 100 W => 30 dB
 - Transmit power = 1500 W => 42 dB

RF Isolation Example 1: Dow Key 1 KW RF Relay

RF Isolation Example 2: Small Omron Relay

- This is an antenna switch shorts unused inputs to ground
 - Input <u>resistance</u> to ground for a <u>non</u>-selected port measures **0.1 ohm** with DVM!

Why isn't the isolation greater than 19 dB between ports that are shorted to ground?

- This characteristic may exist with all <u>antenna</u> switches
 - Manual or relay
 - Results from the grounding of unused ports
 - Grounding of unused ports is for protection against static and lightning
- Is this a big problem?
 - Not likely when used as an antenna switch
 - Possible risk when used to switch transceivers
 - Biggest risk is with tube transmitter and solid state receiver
 - No SWR shutdown circuits in tube transmitters
 - Many Pi Net antenna tuners can match a short under some conditions
 - Solid state receivers have low damage levels compared to tube receivers

System Timing

- "System" timing refers to timing of all components switched during Tx⇔Rx
 - Important when using VOX or QSK
- Improper "System" timing can cause hot switching
- "System" timing accounts for all Tx/Rx switching delays
 - Some radios ensure hot switching
 - Many newer transceivers provide adjustable delays
 - W8JI shows how to measure system timing
 - Requires a dual trace triggered scope
 - W8JI gives an example of a dual relay driver circuit with adjustable delay times for use with older equipment

Sequence of Events Timing

- Receive to transmit sequence:
 - The operator initiates the transmit sequence
 - Amplifier output relay makes full contact
 - The amplifier input relay makes full contact
 - Amplifier bias is switched from standby to operate (if applicable)
 - RF from the transmitter appears at the input of the amplifier
 - RF appears at the output of the amplifier
- This entire sequence can take >15ms with large open-frame relays

Sequence of Events Timing (cont'd)

- Transmit to receive sequence:
 - The operator terminates the transmit sequence
 - RF output from the transmitter ceases
 - Amplifier bias returns to standby (if applicable)
 - Amplifier input relay drops (returns to receive position)
 - Amplifier output relay drops (returns to receive position)

Relays Part 2

Larry Weinstein KONA