Using Grounded Structures as Antennas

First Experience Using a Tower as an Antenna

- 50+ years ago loaded the coax going to a TH3 jr beam on a 32 ft tower for fun
- Worked Western Soma on 80 first call with 75 watts!
- Why did it work?

Top Loading a Tower

Table 3			
Effective	Loading o	f Common Ya	agi Antennas
Antenna	Boom		Equivalent
	Length	S	Loading
	(feet)	(area, ft²)	(feet)
3L 20	24	768	39
5L 15	26	624	35
4L 15	20	480	31
3L 15	16	384	28
5L 10	24	384	28
4L 10	18	288	24
3L 10	12	192	20
TH7	24	2	40 (estimated)
TH3	14	2 22	27 (estimated)

• My 32' tower looked like a 60' pole!

Shunt Feeding a Tower

Fig 40—Principal details of the shunt-fed tower at W5RTQ (now K6SE). The 1.8-MHz feed, left side, connects to the to of the tower through a horizontal arm of 1-inch diameter aluminum tubing. The other arms have standoff insulaton at their outer ends, made of 1-foot lengths of plastic water pipe. The connection for 3.5-4 MHz, right, is made similarly at 28 feet, but two variable capacitors are used to permit adjustment of matching with large changes in frequency.

The Gamma Match

My Typical Setup

Problems

- Tuning was quite sharp
- Concerned about tuner losses
- Wanted to try a pure gamma match
 - To save time..... Model it

My Current Setup

Does it Work?

- 140 countries on 80 during the last 3 winters
- 34 of the 40 CQ Zones

Missing Zones

ADDENDUM TO WAZ MAP

All Sakhalin Island and the Russian Kurile Islands are now in Zone 19. Zone 19: Eastern Siberian Zone—UAØ (C, D, F, I, J, K, L, Q, X, Z). Zone 25: Japanese Zone—HL, P5, and JA.—April 1995

Comparing the Tower to a V @65 Feet

- Watch the S meter as one switches between the two
- Back off the RF gain to disable the AGC and listen to the difference
- On the air test
- Use a pan adapter that displays signal strength in DBM

Power SDR

Results

- Generally DX is 3 DB stronger on the tower
 - − This varies from no improvement to +12 DB
 - Exception: the Caribbean is typically better on the V
- State side is the same or up to 12 to 18 DB stronger on the V

Conclusions

- Don't be afraid to load up various objects!
- Use an antenna tuner when necessary
- Don't jump to conclusions
 - Many nights the V was much better than the tower

Next?

- Receive only antennas
- Using the guy wires as an elevated radial system
- Improving the ground
 - The ground system is not as critical with antennas greater than 1/4 wave length
- Try the tower on 160