Three Terminal Regulators & Overvoltage Protection

Bill Leonard NOCU

Three Terminal Regulators 101

- Current & power dissipation limits vary with P/N & case style
- Available for both positive and negative supplies
- Maximum current is internally limited
- Case temperature is internally limited
- $V_{OUT} = V_{REF} \times (1+R2/R1) \sim 1.25 \times (1+R2/R1)$ $R2 \sim R1 \times (V_{OUT} - 1.25)/1.25$
 - •Recommended R1 = 240 Ω
 - •R2 ~ 192 x (V_{OUT} -1.25)
- MANY uses besides voltage regulation (see data sheet)

Three Terminal Regulators - Gotchas

- C1 is needed to insure stability (ie, no oscillations)
- C2 improves transient response
- D1 is needed to protect regulator
- $V_{IN} V_{OUT} > 2.5 V$ (Spec)
- Case is usually connected to V_{OUT}
- •R3 may/may not be required

•I_{OUT} must always be > 10 mA (Spec) for regulation to occur

Why Add Overvoltage Protection (OVP)?

- Whenever the cost of the load exceeds the cost of OVP
- Transients on AC power line
- Warranty concerns with new transceivers
 - Commercial Power Supplies May Not Have Adequate Protection
 - •From eHam reviews: MFJ-4245MV Switching Power Supply:
 - "MFJ-4245 is falsely advertising that this power supply has an overvoltage protection per specs....output went to about 35 volts! My IC-735 is now fried."
 - •"...my NEW FT950 transceiver was damaged."
 - •"...it burned up my 2m Rig..."
 - •"If you touch the output leads together, your 13 volt supply suddenly puts out 33 volts."

Typical Overvoltage Protection Approach

Response Time of Fuses

Fuses open based upon "energy" dissipated in the fuse
Ampere squared seconds (I²t):

"The melting, arcing, or clearing integral of a fuse, termed I²t, is the thermal energy required to melt, arc, or clear a specific current. It can be expressed as melting I²t, arcing I²t or the sum of them, clearing I²t."

•UL listed or recognized fast acting fuses would typically open within 5 seconds maximum when subjected to 200% to 250% of its rated current.

Problem 1: Transient Feedthru in Voltage Regulators

Transient Feedthru in Voltage Regulators

To Reduce Transient Feedthru in Voltage Regulators

Make (R1 xC1) > 100 usec

Problem 2: Two critical response times need to be addressed or the protection circuit <u>may not protect the load</u>

- Response Time at +V_{OUT} (RT_{OUT})
- •Response Time of the Trigger Circuit (RT_{TRIG})

Response Time At Output (RT_{OUT})

RT_{OUT} RT1 ~ R1 x C1
No C1 specified => RT1 = R1 x C1 = R1 x 0 = 0

Response Time of the Trigger Circuit (RT_{TRIG})

• $RT_{TRIG} = RT_{SCR} + RT2 \sim RT_{SCR} + R2 \times C2 \sim 1 \text{ usec} + R2 \times C2$

Response Time of the Trigger Circuit (RT_{TRIG})

RT2 ~ R2 x C2 = 1000 ohms x 0.000001 Farad = 0.001 sec = 1 msec

Response Time of the Trigger Circuit (RT_{TRIG})

Design Goal for Response Times

Problem 3: No specified minimum load current (I_L)

Problem 3: Most three terminal regulators must source 3-5 mA for regulation to occur

Problem 4: Most three terminal regulators should be protected from damage that could result from a short on the input

Problem 4: Most three terminal regulators should be protected from damage that could result from a short on the input

Problem 4: Maximum current through D1 should be limited whenever an overvoltage protection circuit is used

Note: R1 & R_{Protect} may need to be high wattage

Don't want them to blow open when SCR fires

Solid Copper Wire

Wire Size	Fusing Current	Resistance
Gauge	Amps	Ohms/10 ft
26	20	0.408
24	29	0.257
22	41	0.161
20	58	0.102
18	83	0.064
16	117	0.040

Modified Overvoltage Protection Circuit

ICOM V80 Power Supply With Overvoltage Protection

ICOM V80 Power Supply With Overvoltage Protection

Zener Diode Characteristics

Check your SCR after installation!!!!