Short and Mobile Antennas

Caution

- Look out for power lines
- The ends of an antenna are high voltage points
- Radiation to friends, family, and you

Basic Concepts

- There is very little difference in gain between a full size antenna and a small one
 - .31db
- Any power going into an antenna either radiates or is lost in heat
 - Resistance is a major loss in small antennas
- To make an efficient small antenna we must identify the losses and reduce them as much as possible

Small Transmitting Loop Antenna

- Constructed out of 1" copper pipe
- 75" on a side (fit through a standard door)
- Tunes 3.5 to 11 MHz
- Good for 1 KW
- Trombone style tuning capacitor

Loop Calculations at 3.5 MHz

- Radiation resistance = .0078 ohms
- Resistance of copper pipe = .042 ohms
- Loss = 8 DB
- Current at 1 KW = 100 amps RMS
- Voltage on the capacitor = 20,000 peak
- Bandwidth = 2.4 KHz

Small Antennas in General

- Very low radiation resistance
 - Therefore poor efficiency if the antenna resistance is not reduced
- Very high voltages
- Narrow band width

Radiation Resistance

- Dipole
 - 72 ohms
- Folded dipole
 - 300 ohms
- Vertical
 - -36 ohms

Radiation Resistance 8 Foot Whip

• Over perfect ground:

```
-28MHz = 35 ohms (1.7 \text{ A for } 100 \text{ w})
```

```
-14 \text{ MHz} = 15 \text{ ohms} (2.5 A)
```

$$-7 \text{ MHz} = 5.5 \text{ ohms}$$
 (4.2 A)

$$-3.5 \text{ MHz} = .27 \text{ ohms} \quad (19 \text{ A})$$

$$-1.8 \text{ MHz} = .07 \text{ ohms} \quad (37 \text{ A})$$

Equivalent Circuit for a Vertical

Ground Resistance

• Ground resistance is a major loss in ground

mounted verticals

Reference: Vertical Antenna Classics Page 105

Fig. 4 — Input impedance of resonant quarterwavelength vertical as a function of the number of radials and the condition of the soil.

More is better!

• Unless you are putting more than 20 radials

in, keep them short

Reference: Vertical Antenna Classics Page 102

Fig. 1—Gain vs. radial number and length for poor earth conditions (X = 0.0001, ϵ_r = 7).

Elevated Radials

Reference: Vertical antenna Classics Page 112

• If possible: get them up in the air

Table 7	to
Calculated Power Gain Antenna Systems with	Strength for Isolated Vertical

	£0	Calculated power gain (dBi)						
	1/4-х топороlе			1/4-λ monopole				
Elevation		1/8-λ radials			1/4-λ radials			
angle								
(degrees)	Azimuth angle (degrees)			Azimuth angle (degrees)				
	0	45	90	0	45	90		
0	00	- ∞	– ∞	– ∞	− ∞	- ∞		
5	- 6.29	-6.25	-6.21	-6.12	-6.03	- 5.90		
10	- 2.61	-2.57	-2.53	-2.48	-2.36	-2.22		
15	– 1.18	- 1.13	– 1.09	– 1.10	- 0.95	-0.78		
20	-0.64	-0.58	-0.53	-0.64	-0.43	-0.22		
25	-0.60	-0.53	-0.46	-0.69	-0.42	- 0.16		
30	-0.90	-0.81	-0.73	- 1.12	- 0.77	-0.44		
40	- 2.26	-2.13	-2.00	-2.81	- 2.22	- 1.72		
50	-4.43	-4.25	- 4.07	-5.43	-4.53	- 3.81		
60	<i>- 7</i> .41	-7.16	-6.93	-8.90	-7.63	- 6.68		
70	- 11.45	- 11.14	-10.86	-13.40	– 11.78	-10.63		
80	- 17.87	-17.52	– 17.19	-20.11	-18.26	– 16.97		
90	- 157.65	- 157.65	– 157.65	- 149.71	– 149.71	- 149.71		
Vertical elec	tric		•4					
field strength	7							
(mV/m)	32.72	32.84	32.97	33.35	33.67	34.15		
Input impeda				N_W 10 ANGGRESS				
(ohms)	36	5.81 <i>- j</i> 263.	.26	34.92	+ <i>j</i> 0.83			

Elevated Radials

Works even with short antennas

Table 9
Calculated Power Gain and Electric Field Strength for Isolated Vertical Antenna Systems with 1 Radial

	Calculated power gain (dBi)							
			1/8-λ monop	ole	1/8-λ monopole			
Elevation	1/8-λ radial					1/4-λ radial		
angle								
(degrees)		Azimuth ang	le (degrees)			Azimuth ang	le (degrees)	
(4.3)	0	45	90	180	0	45	90	180
0	_ ∞	- 00	- 00	00	– ∞	- ∞	0 0	– ∞
5	-8.54	-8.88	- 10.84	- 17.05	- 6.96	-7.28	-8.33	10.58
10	-4.76	-5.01	-6.79	- 13.72	-3.19	-3.50	- 4.54	6.90
15	-3.13	-3.29	-4.88	- 12.93	- 1.61	1.90	- 2.92	- 5.47
20	-2.31	-2.36	-3.75	- 13.42	- 0.85	1.12	-2.14	-4.93
25	- 1.86	- 1.80	-3.00	- 14.95	- 0.52	0.77	- 1.79	- 4.90
30	- 1.63	- 1.46	-2.48	- 17.44	-0.46	 0.69	– 1.71	-5.21
40	- 1.41	-1.10	-1.82	– 17.11	- 0.83	- 1.03	- 2.08	- 6.55
50	- 1.19	-0.87	-1.42	- 10.19	- 1.58	– 1.78	- 2.88	- 8.36
60	-0.88	- 0.69	- 1.16	- 5.93	-2.52	- 2.75	-3.89	- 9.51
70	- 0.59	- 0.56	-0.99	-3.32	-3.56	- 3.82	– 4.91	- 8.99
80	- 0.52	- 0.5 9	- 0.89	- 1.72	4.68	- 4.92	-5.68	-7.49
90	-0.85	-0.85	- 0.85	- 0.85	- 5.97	<i>-</i> 5.97	- 5.97	- 5.97
Vertical elect	tric					. ▼ .:		
field strength	7					00.70	05.40	20.10
(mV/m)	24.75	23.45	18.09	9.90	29.95	28.79	25.48	20.18
Input impeda	ance					10.00	. – j1004.27	
(ohms)		23.49	− <i>j</i> 527.41	7.7		12.22	-) 1004.27	

Mobil Antennas

- A vehicle is like a short elevated radial
- Get the radiation resistance up by center loading, top hats

160 Meter Vertical

Reference Vertical antenna Classics Page 87

Mobil Antennas

- Pay lot of attention to grounding to the vehicle
- Use as large of diameter mast as possible
- Check for heat after transmitting

Ground Loss Resistance for a Mobile Antenna

Reference Vertical Antenna Classics Page 93

Fig 3—Ground loss resistance (R_g) measured (see text), and calculated using NEC-2 for an electrically short HF mobile antenna on the basic frame of the vehicle, for two ground conductivities.

Shorten Antennas

Fig 38—Wire dipole antennas. The ratio f/f_0 is the measured resonant frequency divided by frequency f_0 of a standard dipole of same length. R is radiation resistance in ohms. At A, standard single-wire dipole. At B, two-wire linear-loaded dipole, similar to folded dipole except that side opposite feed line is open. At C, three-wire linear-loaded dipole.

Horizontal Antennas

- Low ground losses
- Need height to be effective
 - Minimum 15 to 20 feet

Antennas for the Deck and Patio

- Ground plane
 - Radials along the deck floor
- Dipole along the hand rail
 - Load up a metal hand rail
- Load up a gutter
- A fence make a good radial
- In winter lay out lots of short radials on the grass

Inside Antennas

- Balanced antennas
 - shortened dipoles
 - zig zag
- Unbalanced
 - Random wire
 - Aluminum windows
 - ground connections are radiators

Indoor Antenna Cautions

- Radiation
- Interference
 - To other devices in the area
 - From other devices
- High voltage points

An Experimenter's Delight

- Small antennas are driven by external factors that over ride normal design considerations
- It is generally easier to try an idea that analyze it
- Most systems are low cost
 - entertainment
 - learning experience

Evaluate the System

- Switch between 2 antenna systems
- Compare your signal with a friend and other stations
- Try to improve the antenna based on our discussion
- Have fun!!

Conclusions

- While not ideal, small, mobile, or indoor antennas can be effective if:
 - Minimize ground and resistive losses
 - Maximize the radiation resistance
 - A horizontal antenna is high enough