Using Audio Equalizers to Improve SSB Communications

Bill Leonard

NAØTC - 285 TechConnect Radio Club http://www.naøtc.org/

Topics:

- Commonly Used Methods for Improving HF SSB Comms
- Key points about speech and hearing
- •Equalization:
 - •What is it
 - When to use it
 - Where to use it
 - Transmit applications
 - Receive applications
 - Three cases
 - How to use it
 - What it can do
 - What it cannot do
 - •Some Equalizer Examples:
 - •W2IHY Eight Band Equalizer
 - •MFJ-616/618 Speech Intelligibility Enhancers
 - •A Custom Homebrew Two Band Equalizer

How to Improve SSB Communications?

- 1. Improve Received Signal-to-Noise Ratio (SNR)
- 2. Improve Received Signal-to-Interference Ratio (SIR)
- 3. Use/Improve Signal Processing
 - Digital
 - Analog
 - Equalization

To Improve Received SNR:

- •Use higher gain *antennas*
- •Raise *peak* transmit power
- •Raise *average* transmit power
 - Common method: compression (RF not audio)
 - •5-10 dB of compression is typical
 - •There is a limit:
 - Must trade-off between distortion and SNR improvement
- "Matched filter" detection
 - Most modern radios have adequate filtering
- •Reduce receiver *noise figure*:
 - Will not help when atmospheric noise is dominant
 - Frequently the case on the low HF bands

Signal Processing:

- Used to improve the extraction of signal information from noise and interference
- •Digital Signal Processing (DSP):
 - "Although God made an analog world, Humans keep trying to digitize it!"
 - "Brick Wall" filters
 - Noise reduction
 - Interference cancelling

Improve SNR/SIR

Analog Signal Processing

- •Speech compressors:
 - •RF
- •Better than audio compressors by 8+ dB
- Audio

Increase average transmit power

- •The Human Brain = A very effective signal processor for speech
 - Speech intelligibility
 - •Can be improved by "tailoring" the frequency content of the voice signal to better match the Brain's speech processing algorithm
 - •"Tailoring" <=> Equalization
 - Hams don't normally use equalizers to equalize

What is Equalization:

- •In Music applications:
 - "Equalize" the response of two or more signal paths
 - Compensate for deficiencies in the electronics
 - •Emphasize or de-emphasize one or more instruments
- •In Ham applications:
 - •"Equalization" => Tailoring (ie, intentionally distorting) the frequency response to improve the intelligibility of voice signals
 - Most commonly used at the transmit end
 - Emphasize important frequency ranges and de-emphasize others
 - Can also be very beneficial at the receive end
 - Equalized response goals for SSB <u>transmit</u> applications:
 - For rag-chew applications:
 - Improve "fidelity" of the transmit audio for a more natural sounding voice
 - 2) For **DX & Contest** applications:
 - •Increase the "punch" of the transmit audio
 - •Can be fatiguing to listen to for long periods of time
 - Equalized response goals for <u>receive</u> applications vary widely

What is Important in Speech Recognition:

- •Frequency content of speech varies with time
 - Some frequency ranges are more important than others
- "Good" vs.. "Bad" audio response is very subjective

Spectrogram: Amplitude vs. Frequency vs. Time

10/21/2010 7

What is Important in Speech Recognition (continued):

Speech is made-up of vowels and consonants

•Vowels:

- •Longer duration sounds (*Lows*: 30-300 ms)
- •Examples: "ah" & "oh" sounds
- Significant in determining "Who" is speaking
- Contain most of the sound energy in human speech
 - •Energy in consonants can be >20-30 dB below energy in vowels

•Consonants:

- •Shorter duration sounds (*Highs*: 10-100 ms)
- •Examples: "f" vs. "s" & "d" vs. "t" sounds
- Significant in determining "What" is being said"
- Contain most of the information
 - •Importance of Bandwidth:
 - Accuracy for single syllables:

```
15.0 KHz Bandwidth => 100%
```

7.0 KHz Bandwidth => 95%

3.3 KHz Bandwidth => 75%

1.0 KHz Bandwidth => <50%

Where to Equalize?

•At Transmitter:

- Best place to put an audio equalizer
 - Point of highest SNR, and
 - Location for most benefit to the station using equalization
 - Settings depend on intended use:
 - •Case 1: Rag-chew
 - •Case 2: DX or contesting
 - •RF & 60 Hz hum getting into transmit audio can be a problem

•At Receiver:

- Placed between the receiver and the speaker/headphones
- •Can improve the intelligibility of voice signals when:
 - **Case 1:** They are missing critical frequencies <u>and</u> there is adequate received SNR
 - Case 2: They need more "Punch"
 - **Case 3:** There is a hearing deficiency on the receive end

How to Equalize?

At the TRANSMIT end

Case 1: Improve "fidelity" for rag-chew applications

- •Flat overall response: 100 Hz to 3.0+ KHz
- Sometimes lows are emphasized

Net Overall Transmit Frequency Response:

How to Equalize?

At the TRANSMIT end (continued)

Case 2: Increase the "punch" for DX & Contest applications

- •Cutoff "lows": ~300 HZ (typical)
- •Flat "mids"
- •Emphasize "highs"
 - •Starting ~1 KHz
 - •Maximum emphasis from 2 KHz up
 - •Upper cutoff anywhere from 2.4-3 KHz

Net Overall Transmit Frequency Response:

^{*}Increases "punch" and maintains fidelity

Transmit Equalizer Settings:

- •Initial settings are based on microphone and rig
 - Available from W2IHY for his equalizers
- •Final settings:
 - Usually arrived at after on-the-air testing
 - Depend on numerous variables:
 - Frequency content of the transmitter operator
 - Frequency response of the microphone
 - •Frequency response through the hardware (transmitter + receiver)
 - Use of compression
 - •Hearing response at the receiving end?
 - •Try to find a station that can use a spectral display to evaluate the audio of received signals
 - •Flex 5000, Perseus, etc
 - The equalizer gain settings usually do <u>not</u> represent the final end-to-end response

Equalizers for Transmit Applications

- •Built-in equalizers
 - Most only have 2-3 sub-bands
 - Some newer high end SDR's have very sophisticated DSP based equalizers
- Heil microphones
 - •HC-4 (DX), HC-5 (rag-chew), HC-6 (all purpose) elements
- •MFJ-655B 8 Band Equalizer + ...
 - Designed for use at transmit end
 - •~\$220 new
 - •eHam: 1.8/5 from 6 reviewers
- •W2IHY 8 Band Equalizer + Noise Gate
 - Designed for use at transmit end
 - •~\$300 new (\$150-200 used)
 - •eHam: **5.0/5 from 174 reviewers**

The W2IHY 8 Band Equalizer + Noise Gate:

•8 Band Equalizer:

Splits the input signal into 8 sub-bands with center frequencies of:

•Noise Gate:

- •Shuts off the audio during periods when there is no speech:
 - •Effectively eliminates the background noise from capturing the transmitter during pauses and between sentences
 - •Does *not* improve communication capability

•Monitor:

- Somewhat helpful in setting up the equalizer
 - Doesn't account for frequency response of transmitter
- Also allows for use of equalizer on receive

The W2IHY 8 Band Equalizer (continued):

•Uses eight, one-pole bandpass filters (BPF) in parallel

The W2IHY 8 Band Equalizer (continued):

Note: Feedback modifies overall behavior of equalizer

The W2IHY 8 Band Equalizer (continued):

1600 Hz Band Gain Set to +16 dB

1600 Hz Band Gain Set to -16 dB

Signals Below the Noise Floor:

- •Can <u>not</u> be recovered by an equalizer!
- •Negative SNR + Gain = Negative SNR

Some Equalization Examples:

Example 1: Two hams:

- •Two hams both want flat audio response (ie, for rag-chewing)
- •One buys used cheap mic and a used 8 band equalizer
- •The other buys a new expensive mic and a new 8 band equalizer

Example 2: My Station

- •lcom 7600
 - •10 dB of compression
 - Bass and treble set at 0 dB
- •W2IHY 8 Band Equalizer
- Heil Proset IC

Both Hams would have done better to just buy a good quality communications style microphone for ~\$100!

My Station:

Transmit Spectrum

My Station:

Transmit Spectrum

Transmit Spectrum

Nothing beats a good Spectrum Analyzer/Panadapter for setting up an audio equalizer for transmit!

•It can be used on either the transmit or receive end

Equalizers at the Receive end: "Possibly the best kept secret in Ham Radio"

- •How to equalize at the receive end:
 - Some transceivers offer "Bass" & "Treble" adjustments for the receiver
 - Limited capability
 - Only "Highs" and "Lows" can be adjusted
 - Corner frequencies usually not adjustable
 - •May only have +/- 5 dB of gain adjustment range
 - Adequate for many applications
 - •After market units:
 - MFJ-616 Speech Intelligibility Enhancer
 - •4 Band **single** channel equalizer designed for Rx applications
 - MFJ-618 Speech Intelligibility Enhancer
 - •4 Band dual channel equalizer designed for Rx applications
 - The W2IHY 8 Band Equalizer
 - •Designed for transmit applications, but fully functional during receive
 - Custom homebrew design

Case 1: The transmit signal is missing critical frequencies <u>and</u> the missing frequencies have adequate received SNR:

•Symptoms: <u>some</u> signals are "muffled" or "tinny" and hard to understand, others are not

Case 1: The transmit signal is missing critical frequencies <u>and</u> the missing frequencies have adequate received SNR:

•Symptoms: <u>some</u> signals are "muffled" or "tinny" and hard to understand, others are not

Case 1: The transmit signal is missing critical frequencies <u>and</u> the missing frequencies have adequate received SNR:

•Symptoms: <u>some</u> signals are "muffled" or "tinny" and hard to understand, others are not

Case 1: The transmit signal is missing critical frequencies <u>and</u> the missing frequencies have adequate received SNR:

•Symptoms: <u>some</u> signals are "muffled" or "tinny" and hard to understand, others are not

Case 1: The transmit signal is missing critical frequencies <u>and</u> the missing frequencies have adequate received SNR:

•Symptoms: <u>some</u> signals are "muffled" or "tinny" and hard to understand, others are not

Case 1: The transmit signal is missing critical frequencies <u>and</u> the missing frequencies have adequate received SNR:

•Symptoms: <u>some</u> signals are "muffled" or "tinny" and hard to understand, others are not

How can you get really messed-up audio settings?

A well intentioned backup OP!

A well intentioned backup OP!

A well intentioned backup OP!

"Keep the damn box covered!"

"Keep the damn box covered!"

Keeping it covered is a good idea even if you don't have any backup ops

Case 2: The received signal needs more "Punch" <u>and</u> there is adequate SNR at the receiver output:

May be SNR dependent?

Case 3: The receive operator has a **hearing deficiency**:

•Symptoms: <u>all</u> signals are "muffled" or "tinny" and hard to understand

- •Perceived Amp = what the Brain actually hears
- Signal and Noise are <u>equally</u> affected

Not SNR dependent

Case 3: The receive operator has a **hearing deficiency**:

•Symptoms: <u>all</u> signals are "muffled" or "tinny" and hard to understand

- •Perceived Amp = what the Brain actually hears
- Signal and Noise are <u>equally</u> affected

Not SNR dependent

- A hearing deficiency can result from:
 - •Presbycusis: a gradual, age-related reduction in the ability to hear the higher frequency sounds
 - Noise induced hearing loss (NIHL)
 - •Illness induced
- •Age at which hearing loss begins?

Onset of hearing loss versus age:

A Hearing Deficiency Example

- How is your hearing?
 - •Free On-line hearing test:

http://www.phys.unsw.edu.au/jw/hearing.html

Note:

- •Results are <u>relative</u> sensitivities, not absolute
 - •The shape of the response curve can be very accurate
- •Assumes that your sound card & speakers have a flat frequency response
 - •Can use the computer speakers with an ear plug
 - •Good earphones recommended over computer speakers

Typical response

Frequency (Hz)

Frequency (Hz)

•My left ear has a significant deficiency above 1 KHz

Options:

- 1. Go monaural (ie, use only right ear)
 - The Brain is programmed for "stereo" reception
 - I copy signals better when both ears are used
- 2. Use an **Equalizer** to "**Equalize**" the response of my left & right ears

•My left ear has a significant deficiency above 1 KHz

Options:

- 1. Go monaural (ie, use only right ear)
 - The Brain is programmed for "stereo" reception
 - I copy signals better when both ears are used
- 2. Use an **Equalizer** to "**Equalize**" the response of my left & right ears

The W2IHY 8 Band Equalizer for Receive:

 Designed for transmit applications, however it is fully functional during receive

•Settings used to equalize my left ear and right ear responses:

BAND (Hz)	50	100	200	400	800	1600	2400	3200
GAIN (dB)	0	0	0	0	-16	-16	16	16

W2IHY 8 Band Equalizer:

Results:

This correction resulted is a <u>significant</u> improvement in my ability to copy SSB signals with the left ear!

MFJ-616:

- "Single Channel Speech Intelligibility Enhancer"
 - •4 band audio equalizer *intended for use at the receiver*
 - Sub-band center frequencies:

300 Hz

600 Hz

1200 Hz

2400 Hz

- Each sub-band gain adjustable +/-12 dB
- Designed to compensate for a wide range of hearing deficiencies
- •\$190 new
- •eHam: 5.0/5 from 6 reviewers

MFJ-618:

- "Dual Channel Speech Intelligibility Enhancer"
- Dual channel version of MFJ-616
- •\$220 new
- •eHam: no reviews

Custom Homebrew Equalizer:

- •Equalizing my left ear response only requires a 2 Band Equalizer
- •Can be made with parts readily available at Radio Shack
 - •2-3 ICs and < 30 R's & C's (<\$50)

^{*}A second Custom EQ could also be used in the right channel if needed

Design

Layout

Comparison of results:

Both Equalizers provide a <u>significant</u> improvement in my ability to copy SSB signals with the left ear!

•Signals with <50% copy => \sim 100% copy

Wrap-up:

- Audio equalizers can be used to improve SSB communications:
 - •Transmit end:
 - Adding "Punch" to the transmitted signal
 - •Compensating for the transmitter operator's speech characteristics
 - •Improving the frequency response of the transmitter hardware
 - •Receive end:
 - Adding "Punch" to the received signal (SNR dependent)
 - •Compensating for the transmitter operator's speech characteristics (SNR dependent)
 - •Compensating for the non-ideal responses of the transmitter and/or receiver hardware (may be SNR dependent)
 - Compensating for the effects of hearing deficiencies on the receive end
- Equalizers will not improve intelligibility of signals with negative SNRs
- Equalizers are becoming standard equipment on new transceivers
 For transmit and receive
- No benefit to using an equalizer for narrowband modes
 CW, PSK31, etc

Wrap-up (continued):

- •The optimal settings for TRANSMIT applications are <u>very subjective</u> and dependent upon:
 - The application (rag-chew, DX, etc)
 - •The voice characteristics of the transmitter operator
 - The frequency response of the hardware (transmitter & receiver)
 - •The hearing response of the operator on the <u>receive</u> end
 - The best settings are achieved via spectral analysis of the output signal
 - The analysis can be done at the receive end
- Don't need "Studio" quality audio components (20 Hz 20 KHz)
 - •Only need 150 Hz 3 KHz
 - •Big \$\$\$
 - Sometimes they don't sound as good as components designed for "communications" applications