

The Yagi, J-Pole and NVIS Dipole

And a glance at Antenna Design using 3D EM Software

Brian Mileshosky N5ZGT

285 Tech Connect Radio Club TechFest 03 Nov 2012

Antennas

- The most critical piece of any transmitting/receiving system.
- Come in many shapes (linear, helical, aperture, reflective, horns, loops, mixtures of each) and sizes (100+ foot tower down to something less than the size of a stamp).

Antennas

- The most critical piece of any transmitting/receiving system.
- Come in many shapes (linear, helical, aperture, reflective, horns, loops, mixtures of each) and sizes (100+ foot tower down to something less than the size of a stamp).
- Design criteria: gain, bandwidth, physical size, directivity, polarization, feed method, power handling, price, ease of fabrication, etc.
- Key point: Antennas are reciprocal devices they behave the same while transmitting as they do while receiving (radiation pattern, gain, polarity, etc)
- Designed using a variety of theory and computational tools
 - NEC (Free)
 - 4NEC2 (Free, and pretty incredible)
 - EZ NEC (\$89)
 - PCAAD (\$499)
 - CST Microwave Studio or ANSYS HFSS (>\$50,000)
- Other resources:
 - ARRL Antenna Book
 - LB Cebik's website (<u>www.cebik.com</u>)
 - Antenna Engineering Handbook (Johnson)
 - Antenna Theory (Balanis)
 - Microwave Engineering (Pozar)
 - Google

The Yagi Uda antenna

- Described and published by S. Uda and H. Yagi in the 1920s
- Did not receive full acclaim in the United States until 1928.
- Driven element is excited directly via feedline, all other elements excited <u>parasitically</u>.
- Element lengths/diameters and element spacing determine antenna behavior.
- Typical driven element: a bit less than $\lambda/2$.
- Typical director length: 0.4-0.45λ
 - If multiple directors are used, they are not necessarily the same length or diameter.
 - Typical separation between directors is 0.3-0.4λ, but not necessarily equally spaced.
- Typical separation between driven element and reflector: 0.25λ.
- Little performance is added with the addition of more than one reflector.
- Significant performance is added with the addition of more directors.
- Input impedance is usually low; Gamma matches often used to match to 50Ω .

The Yagi Uda antenna

Typical gain of Yagi-Uda antennas:

3 elements: 7 dBi

4 elements: 9 dBi

6 elements: 10.5 dBi

8 elements: 12.5 dBi

12 elements: 14.5 dBi

15 elements: 15.5 dBi

18 elements: 16.5 dBi

Source: Antenna Engineering Handbook (Johnson)

Note: 0 dBi = 2.14 dBd

Let's start with a Driven Element...

Let's start with a Driven Element...

Let's start with a Driven Element...

Return loss of -10 dB = SWR of 1.92. SWR of 2 means approx. 90% power is transmitted.

Return loss of -15 dB = SWR of 1.43 Return loss of -20 dB = SWR of 1.22

Then add a Director.

Then add a Director.

Then add a Director.

Driven element, reflector, and director. A 3-element yagi.

Total gain (horizontal + vertical; elevation)

Frequency = 146
Main lobe magnitude = 7.7 dB
Main lobe direction = 0.0 deg.
Angular width (3 dB) = 62.6 deg.
Side lobe level = -14.5 dB

How the Yagi shapes up.

Driven element only Gain: 1.98 dBi

Driven element and director Gain: 5.7 dBi

Driven element, director and reflector Gain: 7.74 dBi

The Tape Measure Yagi...

The Tape Measure Yagi

- Easily built from PVC, tape measure material, hose clamps and a short piece of coax.
- Total cost, on average: < \$15 if you have some parts lying in your garage.
- Can achieve up to 7-dBi of gain from this simple antenna perfect for use in the field, or from home. Excellent antenna for direction finding on 2 meters. Just as excellent for reaching distant stations or repeater while in the field, ARES applications, etc.
- Not intended for permanent installation elements will collapse briefly when blown by a gust of wind.
- Not intended for high power use you will be in the near-field of this antenna when transmitting. Use common sense and be safe!
- Original design by Joe Leggio WB2HOL at: http://theleggios.net/wb2hol/projects/rdf/tape_bm.htm

- Tip: Use silver solder since tape measure material is stainless steel.
- **Tip**: Don't use RG-58...too clumsy. RG-174 with BNC or SMA preferred.
- Tip: Round off metal corners to prevent cuts, or fold over piece of electrical tape, or dip in liquid rubber.

The Tape Measure Yagi

Courtesy Joe Leggio WB2HOL

Some other antennas...

2-meter J-Pole antenna

2-meter J-Pole Antenna

Total gain (horizontal + vertical; elevation)

2-meter J-Pole Antenna

Total gain (horizontal + vertical; azimuth)

10 GHz Horn antenna

Model of a round horn antenna fed by rectangular waveguide

10 GHz Horn antenna

Total gain (horizontal + vertical; elevation)

10 GHz Horn antenna

A quick look at Dipoles and NVIS

An excellent presentation on what Near Vertical Incidence Skywave (NVIS) is all about: http://www.arrl.org/nvis

Dipole in free space (no ground effects)

Dipole in free space (no ground effects)

Free space; no ground effects

Total gain (horizontal + vertical polarization)

Dipole (1λ above ground)

Dipole modeled over *perfect, infinite* ground. Total gain (horizontal + vertical polarizations). Note that most of radiation is taking off at a somewhat low angle. This is a non-NVIS case.

Dipole (0.1λ above ground)

Dipole modeled over *perfect, infinite* ground. Total gain (horizontal + vertical polarizations). Note that antenna now radiates almost entirely upward – perfect for NVIS operations.

Selected Web Resources

Yagis:

Yagi Antenna Design, Peter Viezbicke, December 1976: http://tf.nist.gov/timefreq/general/pdf/451.pdf

J-Poles:

Compilation of articles: http://www.arrl.org/vhf-omni

NVIS:

Excellent Powerpoint presentation with links to websites: http://www.arrl.org/nvis

Antenna design & software:

- L.B. Cebik W4RNL (SK): http://www.cebik.com
- ARRL Technical Information Service: http://www.arrl.org/technical-information-service
- NEC: http://www.nec2.org
- 4NEC2: http://home.ict.nl/~arivoors
- EZ NEC: http://www.eznec.com
- ANSYS HFSS: http://www.ansys.com/Products/Simulation+Technology/Electromagnetics
- CST Microwave Studio: http://www.cst.com/Content/Products/MWS/Overview.aspx

Backup

Driven element only

Driven element plus director

Driven element, reflector & director

Dipole (1λ above ground)

Dipole (0.1λ above ground)

