
UNIQUE FEATURES OF A
40/20 METER
HOMEBREW RECEIVER
LEE SNOOK W1DN

HIGHWAY 285 TECHCONNECT CLUB

TECHFEST

NOVEMBER 3, 2018

PROJECT GOALS

• Simple receiver design with readily available parts

• Adequate specifications for general use

• At home fabrication techniques

• Simple reconfiguration for the Arduino Controller and LCD Display Layout

• 50 ohm Interstage coupling for easy testing of each stage

2

WILL FOCUS ON THE FOLLOWING TOPICS

• History

• Block Diagram and Overview

• General Specifications

• LO Frequency Selection

• I.F. Crystal Filter Design

• Microprocessor Controlled (ATMEGA 328)

• Arduino Based Development System

• 7 inch Color LCD Touch Display

• 4D Systems IDE for display configuration

• At home PCB fabrication

• Single Sided PCB, Maximize Ground Plane

• Rotarty Encoder Tuning Knob with selectable increments

• Variable Lowpass Audio Filter

• Two Local Oscillator DDS synthesizers

• Solid state front end switching

• Band Spectrum Display

• 10 User Memories

• Simulated Analog S Meter

• Externally programmable through a serial port

• 50 ohm Interstage coupling impedance

• Passband Offset Tuning

3

HISTORY

• First Receiver – Foxhole Radio

• Razor Blade as a crystal detector

• Of course, 110 turns on a toilet paper

roll

• Second Receiver – Dual Slide Tuning

• 5th Grade

• 11 years old

4

HISTORY
MY FIRST MODULAR

RECEIVER BREADBOARD.

EACH MODULE IS ON

IT’S OWN PCB WITH 50

OHMS IN AND OUT

5

HISTORY
SECOND RECEIVER
USING INDIVIDUAL
PLUG IN MODULES
AND A LCD DISPLAY

6

7

HISTORY
ITERATION WITH
4D SYSTEMS
COLOR TOUCH 4
INCH DISPLAY

8

HISTORY
FOURTH
RECEIVER
(TODAY)

9

10

Internal view

BLOCK

DIAGRAM

11

LAYOUT

12

GENERAL SPECIFICATIONS

•Sensitivity -120 dBm BW = 3200 Hz

• IMD -42 dBm

•Third Order Intercept ((120-42)/2+42 = -3 dBm

•SFDR 120-42 = 92 dbm

13

LOCAL AND PRODUCT DETECTOR FREQUENCY SELECTION TABLE

Select a Local oscillator (LO) such that:

(use the lower cutoff edge since it has the steepest shape factor)

• As the receive frequency increase, the LO increases

• For LSB and USB the sideband falls within the crystal filter passband

14

40 METERS

RECEIVE 7 MHZ

1ST LO=16.9966 Mhz

I.F. = 16.9966 – 7 = 9.996598 MHZ

NOTE; THE LOWER EDGE OF THE I.F. CRYSTAL FILTER

• Case 1

• As the receive frequency increases

• the LO frequency increases

• LO = IF + RF

• Case 2 (For LSB)

• As the Receive Lower Sideband

Envelope decreases

• the IF increases

• IF = LO - RF

15

20 METERS

RECEIVE 14 MHZ

1ST LO=4.003402 Mhz

IF = RF - LO

• Case 1

• As the receive frequency increases

• the LO frequency increases

• LO = IF + RF

• Case 2 (For LSB)

• the Receive Lower Sideband Envelope

decreases

• the IF increases

• IF = LO - RF

16

EXAMPLES (CONT.)

RECEIVE 14 MHZ

1ST LO=4.003402 MHZ

I.F. = 14-4.003402= 9.996598 MHZ

NOTE; THE LOWER EDGE OF THE I.F. CRYSTAL FILTER

• Case 1; As the receive frequency increase, the

LO frequency increases

• Receive 14.1 Mhz

• 1st LO=4.003402 Mhz

• I.F. = 14.1 – 4.003402 = 10.096598 Mhz

Note; The Lower Edge of the I.F. Crystal Filter

• Case 2; For LSB, the Receive Lower Sideband

Envelope decreases, the IF increases

• Receive 6.999 Mhz, 1 khz audio tone

• 1st LO=16.9966 Mhz

• I.F. = 16.9966 – 6.999 = 9.9976 Mhz

Note; The LSB envelope is within the passband

17

CRYSTAL FILTER DESIGN
MEASURE A GROUP OF 10 MHZ CRYSTALS AND SELECT 6 THAT HAVE THE CLOSEST PARAMETERS

18

CRYSTAL FILTER DESIGN (CONT.)

• For a review of Crystal Filter Design use the following reference

Crystal Motional Parameters, A Comparison of Measurement

Approaches

Jack R. Smith K8ZOA, 11 June 2006

• Using the Freeware Progam; DISHAL vers 2.0.5.2;

Enter Lm, Cm, Cp, BW, # of Xtals, Ripple

19

20

MEASURED RESULT
BANDWITH FOR THIS FILTER = 3 kHz

21

MICROPROCESSOR (ATMEGA 328)

• The Arduino Uno prototyping board

• Arduino Uno is a microcontroller board based on the ATmega328PIt has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz

quartz crystal, a USB connection, a power jack, an ICSP header and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a computer with a USB

cable or power it with a AC-to-DC adapter or battery to get started.

• Off-Boarding the ATMEG328 requires changing the pin assignments

• For instance; Programming a command to Pin 13 on the Uno Prototype board must now be

changed to Pin19 for the stand alone ATMEGA328. See the diagame below.

22

23

MICROPROCESSOR PROGRAMMING

• Programming either the Uno board or the stand alone processor

requires connecting a serial USB cable to the Uno USB port or, for

the stand alone case, using a MAX232 chip to convert the RS232

voltages to 5 volts.

• I use an USB to RS232 converter cable which can be purchased

online at;

https://www.amazon.com/Serial-RS232-Converter-Laptop-

Notebook/dp/B00404P0L6
24

MICROPROCESSOR PROGRAMMING (CONT.)

• A simple programming example:

• Make an LED blink. Connect and LED to Pin 13 of the Arduino Uno Proto board with

the appropriate series dropping resistor of 330 ohms.

• Note: The maximum current sourcing pin current is = 40 ma.

• An integrated development environment (IDE) is a software application that ides

comprehensive facilities to computer programmers for software development.

• Download the Arduino IDE at https://www.arduino.cc/en/Main/Software

25

Code;

// The setup function runs when you press reset or power the board

//Code in the setup(), Intitalizes Pins as Input or Output.

//Setup only runs Once on startup

// The void keyword is used only in function declarations. It indicates that the function is expected to return

no information

to the function from which it was called.

//The following code is for the UNO proto board, Pin 13 would be changed to pin 19 for the off boarded

processor.

void setup()

{

pinMode(Pin 13, OUTPUT); // initialize digital pin 13 as an output.

}

void loop() // The loop function runs over and over again forever

{

digitalWrite(Pin 13, HIGH); // turn the LED on (HIGH is the voltage level)

delay(500); // wait for a second

digitalWrite(Pin 13, LOW); // turn the LED off by making the voltage LOW

delay(500); // wait for a second

} 26

PROGRAMMING THE 4D SYSTEMS LCD DISPLAY

27

Backside view

PROGRAMMING THE LCD DISPLAY (CONT.)

• The microUSB Programming Adaptor

(uUSB-PA5 and uUSB-PA5-II) is a USB to

Serial-TTL UART bridge converter

• Insert the micro SD card into the PC USB

port (use micro to mini USB adapter

card if necessary)

• Connect uUSB-PA5 from +5V, TX, RX,

GND, Reset connector to PC USB port.

28

PROGRAMMING THE LCD DISPLAY

29

Boot up the
IDE program

PROGRAMMING THE LCD DISPLAY (CONT.)

30

Select the ViSi
Genie Display
Type and
Orientation

PROGRAMMING THE LCD DISPLAY (CONT.)

31

Select Progamming

Environment;

By simply laying the display

out with the wanted objects

and setting the events to

drive them, the code is

written automatically. ViSi-

Genie provides the latest

rapid development

experience from 4D Labs

PROGRAMMING THE LCD DISPLAY (CONT.)

32

Control Objects that can be

used

PROGRAMMING THE LCD DISPLAY (CONT.)

33

Start the LCD layout by selecting
and placing the “Objects” onto the

workspace.
Example: In this example we will

place a Button on the screen and
note the Object Inspector

Remember to Select the Comms Tab
and Comm Port, it will turn Blue

when connected.
Name and Index number.

PROGRAMMING THE LCD DISPLAY (CONT.)

34

Under Object
Inspector on the
right side of the
screen, select the
Events Tab and
select “Report
Message”.

EVENT HANDLER EXAMPLE

Void Setup()
{
Serial.begin(115200);
genie.Begin(Serial);
genie.AttachEventHandler(myGenieEventHandler);
delay (2000); //let the display start up
genie.WriteContrast(brightness);}

35

The Arduino Code (in the Event Handler) will look for a Winbutton Event with an Index

of 0 and execute the user code when this button is pressed.

The programming language used for Arduino is based on C language. The syntax is almost
identical to that of C or C++.

EVENT HANDLER EXAMPLE (CONT.)

Void Loop()
{

genie.DoEvents();
}

//---Event Handler---
void myGenieEventHandler(void)

{
genieFrame Event;

genie.DequeueEvent(&Event);

if(Event.reportObject.cmd == GENIE_REPORT_EVENT)

{

if (Event.reportObject.object == GENIE_OBJ_WINBUTTON)

{

//------------------------If Winbutton Pressed, Do Something-----------------------------------
if (Event.reportObject.index == 0) // If Button(0)

{
//Do Something

}
36

PCB FABRICATION PROCESS

37

I use PCB Artist for
Schematic Capture
and Board Layout

The Receiver Layout in PCB Artist:

PCB FABRICATION PROCESS (CONT.)

38

• Using an Ink Jet printer,

• print the Top Copper

side of the Layout

• High Contrast Black

• onto rough side of

transparent film

• Remember, under printer

settings, Flip the print under

the printer setup so that the

rough side is facing the

photo sensitive side of the

PCD board.

PCB FABRICATION PROCESS (CONT.)

39

• Remove the light

protective film from

the photo sensitive

PCB board

• Insert the photo

sensitive board under

the transparent film

and expose in a

lightbox

PCB FABRICATION PROCESS (CONT.)

• Heat Developer and Ferric Chloride to ∼90 degrees F.

• Exposed PCB into glass tray with PCB Developer

• DATAK Cat. No 12-404 Positive Type PCB Developer

• Developer concentrate diluted 1:10 with water.

•Agitate until the Light Sensitive Film (Green color) is dissolved

between traces.

•Wash the board

40

PCB FABRICATION PROCESS (CONT.)

• Board into Ferric Chloride Etchant Solution bath

• MG Chemicals #415-1L,945 ml bottles Ferric Chloride

• Typically 15 minutes

• Periodically agitate

• Inspect and remove when the copper between traces has been

dissolved

•Wash off Ferric Chloride with fresh water

41

PCB FABRICATION PROCESS (CONT.)

42

QUADRATURE ROTARY ENCODER
SPARKFUN ELECTRONICS; PN COM-11102

43

QUADRATURE ROTARY ENCODER (CONT.)

44

An RC time network was added to Ports A and B for Debounce. R=10k and C=.01µf.

45

In the following code;

A1=Sample 1 of Port A

A2=Sample 2 of Port A

B=Sample Port B

//------------------------Rotarty Encoder------------------------

A1=digitalRead(Encoder_Pin1);

delay(15); //Delay next sample by

15 ms

A2=digitalRead (Encoder_Pin1);

B=digitalRead(Encoder_Pin2);

Quadrature Rotary Encoder (cont.)

46

if (A1>A2) //A1(sample 1) is greater

than A2(sample 2)

{

if (B==HIGH)

{

f_rx=f_rx+increment[inc_pointer]; //Increase frequency

by increment

freq_low=(f_rx%10000);

freq_high=(f_rx-freq_low)/10000;

genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, freq_low);

genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, freq_high);

load1();

}

else //A(sample 1) is less than

A(sample 2)

{

f_rx=f_rx-increment[inc_pointer]; //Decrease frequency

by increment

freq_low=(f_rx%10000);

freq_high=(f_rx-freq_low)/10000;

genie.WriteObject(GENIE_OBJ_LED_DIGITS, 2, freq_low);

genie.WriteObject(GENIE_OBJ_LED_DIGITS, 3, freq_high);

load1();

}

}

More work is required, sometimes the encoder will skip a count when turning the wheel too fast.

VARIABLE BANDPASS AUDIO FILTER

• MAX7403 is a 8th-order, lowpass, elliptic, switched-capacitor filters

• These devices draw 2mA of supply current and allow corner frequencies

from1Hz to 10kHz

• Two clocking options are available

• self-clocking through the use of an external capacitor

• external clocking for tighter cutoff-frequency control

• Cutoff Frequency=Clock/100. Fosc(kHz)=(38*10000)/Cosc; Cosc is in pf.

• For my application, I used external capacitors (self clocking) switched with a

solid state single pole three throw switch (TS5A3357)
47

VARIABLE BANDPASS AUDIO FILTER (CONT.)

48

VARIABLE BANDPASS AUDIO FILTER (CONT.)

• Audio Lowpass

Filter Frequency

Response

49
-25

-20

-15

-10

-5

0

5

0 500 1000 1500 2000 2500 3000 3500 4000

3000

2400

1800

700

DDS (DIRECT DIGITAL SYNTHESIZERS (AD9850)
DDS TUTORIAL

• Traditional designs of high bandwidth frequency synthesizers employ the use

of a phase-locked-loop (PLL).

• A direct digital synthesizer (DDS) provides many significant advantages over

the PLL approaches

• Fast settling time

• Sub-Hertz frequency resolution

• Continuous-phase switching response

• Low phase noise

50

DIRECT DIGITAL SYNTHESIZERS (CONT.)

• A DDS produces a sine wave at a given frequency

• The frequency depends on two variables

• Reference-clock frequency

• Binary number programmed into the frequency register (tuning word)

51

DIRECT DIGITAL SYNTHESIZERS (CONT.)

• Binary number in frequency register provides main input to phase accumulator

• Sine look-up table used

• Phase accumulator computes phase (angle) address for look-up table

• Outputs the digital value of amplitude

• Crresponding to the sine of that phase angle—to DAC

• DAC converts number to a corresponding value of analog voltage or current

52

DIRECT DIGITAL SYNTHESIZERS (CONT.)

• To generate a fixed-frequency sine wave, constant value (the phase increment

– from binary number added to the phase accumulator with each clock cycle.

• If the phase increment is large, the phase accumulator will step quickly through the sine

look-up table and thus generate a high frequency sine wave.

• If the phase increment is small, the phase accumulator will take many more steps,

accordingly generating a slower waveform

53

DIRECT DIGITAL SYNTHESIZERS (CONT.)

• Consider the case for n = 32, and M = 1. The phase accumulator steps through each of 232 possible

outputs before it overflows and restarts. The corresponding output sinewave frequency is equal to the

input clock frequency divided by 2^32. If M=2, then the phase accumulator register "rolls over" twice as

fast, and the output frequency is doubled. This can be generalized as follows.

• For an n-bit phase accumulator (n generally ranges from 24 to 32 in most DDS systems), there are 2n

possible phase points. The digital word in the delta phase register, M, represents the amount the phase

accumulator is incremented each clock cycle. If fc is the clock frequency, then the frequency of the output

sinewave is equal to:

• fOUT = (Δ Phase × CLKIN)/232

• Δ Phase=(fOUT ×232)/ CLKIN

54

DIRECT DIGITAL SYNTHESIZERS

• AD9850 is a highly integrated

device that uses advanced DDS

technology coupled with an internal

high speed, high performance D/A

converter and comparator to form a

complete, digitally programmable

frequency synthesizer and clock

generator function.

• Premounted on a small PCB online

from either Amazon or Digikey.
55

DIRECT DIGITAL SYNTHESIZER (AD9850)

• The frequency tuning, control, and phase modulation words are loaded into

the AD9850 via

• Parallel byte or

• Serial loading format (I used the serial loading format)

• In serial load mode, subsequent rising edges of W_CLK shift the 1-bit data on

Pin 25 (D7) through the 40 bits of programming information.

• After 40 bits are shifted through, an FQ_UD pulse is required to update the

output frequency (or phase).

56

57

The Arduino Code for loading the DDS synthesizer:

//--------------------DDS Loader------------------------------

long function_delta_phase1()

{

freq_dds1=f_rx+if_center-offset;

//From the equation above ∆ Phase=(fOUT ×232)/ CLKIN

long delta_phase1 =(((freq_dds1)*pow(2,32))/clock);

return (delta_phase1);

void load1()

{

long delta_phase1=function_delta_phase1();

digitalWrite (LOAD1_Pin, LOW);

shiftOut(DATA_Pin, CLOCK_Pin, LSBFIRST, delta_phase1);

shiftOut(DATA_Pin, CLOCK_Pin, LSBFIRST, delta_phase1 >>

8);

shiftOut(DATA_Pin, CLOCK_Pin, LSBFIRST, delta_phase1 >>

16);

shiftOut(DATA_Pin, CLOCK_Pin, LSBFIRST, delta_phase1 >>

24);

shiftOut(DATA_Pin, CLOCK_Pin, LSBFIRST, 0x0);

digitalWrite (LOAD1_Pin, HIGH);

}

